[ad_1]
Paolo, F. S., Fricker, H. A. & Padman, L. The volume loss from Antarctic ice shelves is accelerating. Science 348, 327-331 (2015).
Wouters, B. et al. Dynamic glaciation on the southern peninsula of Antarctica. Science 348, 899-903 (2015).
Konrad, H. et al. Net withdrawal of Antarctic Glacier Grounds. Nat. Geosci. 11, 258-262 (2018).
DeConto, R.M. & Pollard, D. Contribution of Antarctica to the Growth of Past and Future at Sea Level. The nature 531, 591-597 (2016).
Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An Overview of CMIP5 and Design of the Experiment. Bull. I have. Meteorol. Shock. 93, 485-498 (2012).
Eyring, V. et al. Overview of the experimental project and the experimental organization of the Model 6 Intercomparation Project (CMIP6). Geosci. Model Dev. 9, 1937-1958 (2016).
Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A. & Lenaerts, J. Accelerating the contribution of Greenland and Antarctic Ice Sheets to sea level rise. Geophys. Res. leit. 38, L05503 (2011).
Stouffer, R.J., Seidov, D. & Haupt, B.J. Climatic response to foreign freshwater sources: the North Atlantic versus the South Ocean. J. Clim. 20, 436-448 (2007).
Fogwill, C.J., Phipps, S.J., Turney, C.S.M. & Golledge, N.R. The sensitivity of the southern ocean to an increased contribution of the Antarctic region to the melting of the ice layer. Earths Futur. 3, 317-329 (2015).
Park, W. & Latif, M. Ensemble global warming simulations with melted water Idealized Antarctica. Clim. dyn. https://doi.org/10.1007/s00382-018-4319-8 (2018).
Bintanja, R., van Oldenborgh, G.J., Drijfhout, S.S., Wouters, B. & Katsman, C.A. The important role for ocean heating and the rise in ice temperature in the expansion of Antarctic ice. Nat. Geosci. 6, 376-379 (2013).
Paul G., Smith, I.J., Langhorne, P.J. & Bitz, C.M. Time-dependent fresh water inflows from ice shelves: the impact on ice from the Antarctic Sea and the South Ocean in an Earth system model. Geophys. Res. leit. 44, 10454-10461 (2017).
Rhodes, C. J. Conference on Climate Change in Paris in 2015: COP21. Sci. Prog. 99, 97-104 (2016).
Oppenheimer, M. Global warming and stability Ice Antarctic Ice Sheet. The nature 393, 325-332 (1998).
Rignot, E. & Jacobs, S. Rapid thawing of the widespread bottom near Antarctic ice sheet grounding lines. Science 296, 2020-2023 (2002).
Shepherd, A., Wingham, D. & Rignot, E. The warm ocean erodes the Western Antarctic ice sheet. Geophys. Res. leit. 31, L23402 (2004).
Obes, T., Abe-Ouchi, A., Kusahara, K., Hasumi, H. & Ohgaito, R. The Basal Melting of Antarctic Ice Sheets at Climatic Fortification of Last Glacial Maximum and CO2 doubling. J. Clim. 30, 3473-3497 (2017).
Aiken, C. M. & England, M. H. The sensitivity of the current climate to the freshwater force associated with ice loss in Antarctica. J. Clim. 21, 3936-3946 (2008).
Bakker, P., Clark, P.U., Golledge, N.R., Schmittner, A. & Weber, M.E. Holocene climate changes centennial scale, amplified by the ice discharge of Antarctic Ice Sheet. The nature 541, 72-76 (2017).
Swart, N.C. & Fyfe, J.C. The influence of the recent withdrawal of the Antarctic ice sheet on the simulated ice zone trends. Geophys. Res. leit. 40, 4328-4332 (2013).
Zhang, R. & Delworth, T. The tropical reaction simulated at a substantial weakening of Atlantic thermohaline circulation. J. Clim. 18, 1853-1860 (2005).
Cabré, A., Marinov, I. & Gnanadesikan, A. Global atmospheric teleconferencing and multidecadial climatic oscillations due to convection of the southern ocean. J. Clim. 30, 8107-8126 (2017).
Purich, A., Cai, W., England, M. H. & Cowan, T. Proof of the Link between Modeling Trends of Antarctic Ice and Undeveloped Wind Changes. Nat. commun. 7, 10409 (2016).
Polvani, L.M. & Smith, K.L. Pot explains natural variability observed Antarctic ice trends? New models of evidence from CMIP5. Geophys. Res. leit. 40, 3195-3199 (2013).
Haumann, F. A., Notz, D. & Schmidt, H. Anthropic Influence on Recent Changes in Antarctic Ice-Based Circulation. Geophys. Res. leit. 41, 8429-8437 (2014).
Merino, N. et al. Impact of freshwater Antarctic water growth on regional ice cover in the South Ocean. Ocean Model. 121, 76-89 (2018).
Bintanja, R., Van Oldenborgh, G. J. & Katsman, C. A. Effect of Fresh Water Growth in Antarctic Ice Shelves on Future Ice Antarctic Trends. Ann. Glaciol. 56, 120-126 (2015).
Shepherd, A. et al. A reconciled estimate of the ice mass balance. Science 338, 1183-1189 (2012).
Sutterley, T. C. et al. The mass loss of Amundsen's western embarrassment of Antarctica from four independent techniques. Geophys. Res. leit. 41, 8421-8428 (2014).
Pauling, A.G., Bitz, C.M., Smith, I.J. & Langhorne, P.J. The answer of the southern and antarctic ocean ice to fresh water from ice shelves in an Earth system model. J. Clim. 29, 1655-1672 (2016).
Goddard, P. B., Dufour, C. O., Yin, J., Griffies, S. M. & Winton, M. CO2– the warming of the ocean induced by the Antarctic continental shelf in a global climate model. J. Geophys. Res. oceans 122, 8079-8101 (2017).
Stewart, A. L. & Thompson, A. F. Eddy-mediated transport of deep warm circumferential waters over the Antarctic shelf break. Geophys. Res. leit. 42, 432-440 (2015).
Silvano, A. et al. Refreshing by melting glacial waters improves the melting of ice shelves and reduces the formation of Antarctic's bottom. Sci. adv. 4, eaap9467 (2018).
Spence, P. et al. Localized Rapid Localized Warming of Antarctic Underwater Waves by Remote Winds. Nat. Clim. Chang. 7, 595-603 (2017).
Massom, R. A. et al. Antarctic disintegration of ice shelves triggered by sea ice loss and swelling of the ocean. The nature 558, 383-389 (2018).
Vizcaino, M. et al. Greenland's coupled Ice Sheet simulations and climate change up to 2300 AD. Geophys. Res. leit. 42, 3927-3935 (2015).
Sangiorgi, F. et al. The warming of the southern ocean and the withdrawal of the Wilkes Land ice sheet during the Miocene. Nat. commun. 9, 317 (2018).
Fyke, J., Sergeinko, O., Loftverstorm, M., Price, S. & Lenaerts, J. T. M. An Overview of Interactions and Feedback between Ice Sheets and the Earth System. Rev. Geophys. 56, 361-408 (2018).
Stern, A. A., Adcroft, A. & Sergienko, O. Effects of Antarctic Antarctic Antarctic Antarctic Antarctic Dimension Distribution on a Global Climate Model. J. Geophys. Res. oceans 121, 5773-5788 (2016).
Rignot, E., Jacobs, S., Mouginot, J. & Scheuchl, B. Ice melting around the Antarctic. Science 341, 266-270 (2013).
Stammer, D. The global ocean response to the melting of ice in Greenland and Antarctica. J. Geophys. Res. oceans 113, C06022 (2008).
Haid, V., Iovino, D. & Masina, S. The Impact of Sweet Water Change on Ice in the Antarctic Sea, in an ocean-ice model. cryosphere 11, 1387-1402 (2017).
El, J., Winton, M., Vecchi, G., Jia, L. & Rugenstein, M. The transient climatic sensitivity depends on the oceanic circulation of the basic climate. J. Clim. 30, 1493-1504 (2017).
Swingedouw, D., Fichefet, T., Goosse, H. & Loutre, M. F. Impact of freshwater emissions in the South Ocean on AMOC and climate. Clim. dyn. 33, 365-381 (2009).
Gregory, J.M. et al. The Data Flow Abnormality (FAFMIP) model for interfacing to CMIP6: Investigating climate change at sea and oceans in response to CO2 forcing. Geosci. Model Dev. 9, 3993-4017 (2016).
Fetterer, F., Knowles, K., Meier, W., Savoie, M. & Windnagel, A.K. Sea Ice Index, version 3: Expansion of sea ice. National Snow and Ice Data Center https://nsidc.org/data/G02135/versions/3 (2017).
NOAA. Data Announcement 88-MGG-02, Digital Ground Surface Relief https://www.ngdc.noaa.gov/mgg/global/etopo5.html (National Geophysical Data Center, Boulder, 1988).
Gent, P. R. et al. The model of the Community climate system version 4. J. Clim. 24, 4973-4991 (2011).
Dunne, J. P. et al. GFDL from ESM2 worldwide coupled climate-carbon models of earth. Part I: physical formulation and basic simulation features. J. Clim. 25, 6646-6665 (2012).
Dunne, J. P. et al. GFDL from ESM2 worldwide coupled climate-carbon models of earth. Part II: Carbon system formulation and basic simulation features. J. Clim. 26, 2247-2267 (2013).
Griffies, S. Gent-McWilliams flux flow. J. Phys. Oceanogr. 28, 831-841 (1998).
Stocker, T. et al. into the Climate Change 2013: The Basics of Physical Science. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) 33-115 (Cambridge University Press, Cambridge, 2013).
Sallée, J. B. et al. Assessment of water movement in the South Ocean and features in CMIP5 models: historical bias and response. J. Geophys. Res. oceans 118, 1830-1844 (2013).
Shu, Q., Song, Z. & Qiao, F. Assessment of ice simulations at sea in CMIP5 models. cryosphere 9, 399-409 (2015).
Reintges, A., Martin, T., Latif, M. & Park, W. Physical control of the variability of the deep convection of the southern ocean in the CMIP5 models and the Kiel climate model. Geophys. Res. leit. 44, 6951-6958 (2017).
Gordon, A. The deep Antarctic convection to the west of Maud's growth. J. Phys. Oceanogr. 8, 600-612 (1978).
by Lavergne, C., Palter, J.B., Galbraith, E.D., Bernardello, R. & Marinov, I. The Cessation of Deep Convection in the Atlantic Ocean Open to Anthropic Climate Change. Nat. Clim. Chang. 4, 278-282 (2014).
Pellichero, V., Sallee, J.-B., Schmidtko, S., Roquet, F. & Charrassin, J.-B. Mixed ocean layer beneath the ocean of the South Ocean: seasonal cycle and forcing. J. Geophys. Res. oceans 122, 1608-1633 (2017).
Swart, N.C. & Fyfe, J.C. Changes observed and simulated in southern southern southern hemisphere wind. Geophys. Res. leit. 39, L16711 (2012).
Downes, S. M. & Hogg, A. M. Southern Ocean Circulation and Compensation of Turbulence in CMIP5 Models. J. Clim. 26, 7198-7220 (2013).
Frölicher, T. L. et al. Dominance of the South Ocean in Anthropic Carbon and Heat Absorption in CMIP5 Models. J. Clim. 28, 862-886 (2015).
Verdy, A. & Mazloff, M.R. A data assimilation model for Southern Ocean biogeochemistry estimation. J. Geophys. Res. oceans 122, 6968-6988 (2017).
Rodgers, K. B., Lin, J. & Froelicher, T. L. The appearance of several oceanic ecosystem leaders in a large suite with a model of an earthly system. Biogeosciences 12, 3301-3320 (2015).
Wang, Z. et al. An atmospheric origin of the multi-decade bipolar railings. Sci. representative. 5, 8909 (2015).
Meehl, G. A., Arblaster, J.M., Bitz, C.M., Chung, C. T. Y. & Teng, H. The expansion of the Antarctic ice between 2000 and 2014, determined by the tropical variability of the Pacific decadence. Nat. Geosci. 9, 590-595 (2016).
Depoorter, M. A. et al. Traffic flows and basal melting rate of Antarctic ice shelves. The nature 502, 89-92 (2013).
Dupont, T. & Alley, R. Assessment of the importance of ice support to ice flow. Geophys. Res. leit. 32, L04503 (2005).
Lazeroms, W. M. J., Jenkins, A., Gudmundsson, G. H. & van de Wal, R. S. W. Modeling the current basal melting rates for Antarctic ice shelves using a parameterisation of floating plumes of molten water. cryosphere 12, 49-70 (2018).
MacAyeal, D.R. Oceanography of the Antarctic Continental Shelf (eds., Jacobs, S.) 133-143 (American Geophysical Union, Washington, 1985).
Netherlands, P.R., Jenkins, A. & Holland, D.M. The answer to melting the ice base at variations in ocean temperature. J. Clim. 21, 2558-2572 (2008).
Little, C.M., Gnanadesikan, A. & Oppenheimer, M. How the morphology of the ice shelf controls the basal melting. J. Geophys. Res. oceans 114, C12007 (2009).
Goldberg, D. N. et al. Investigating the interaction of ice and ocean with a fully coupled ice-ocean model: 2. Sensitivity to external forces. J. Geophys. Res. Earth Surf. 117, F02038 (2012).
Griffies, S.M. Elements of the Ocean Modular Model (MOM). Report no. 7, https://github.com/mom-ocean/mom-ocean.github.io/blob/master/assets/pdfs/MOM5_elements.pdf (NOAA GFDL Ocean Group, 2012).
Source link