Saturday , May 28 2022

Changing the future climate due to Antarctic melting waters



[ad_1]

  • 1.

    Paolo, F. S., Fricker, H. A. & Padman, L. The volume loss from Antarctic ice shelves is accelerating. Science 348, 327-331 (2015).

  • 2.

    Wouters, B. et al. Dynamic glaciation on the southern peninsula of Antarctica. Science 348, 899-903 (2015).

  • 3.

    Konrad, H. et al. Net withdrawal of Antarctic Glacier Grounds. Nat. Geosci. 11, 258-262 (2018).

  • 4.

    DeConto, R.M. & Pollard, D. Contribution of Antarctica to the Growth of Past and Future at Sea Level. The nature 531, 591-597 (2016).

  • 5.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An Overview of CMIP5 and Design of the Experiment. Bull. I have. Meteorol. Shock. 93, 485-498 (2012).

  • 6.

    Eyring, V. et al. Overview of the experimental project and the experimental organization of the Model 6 Intercomparation Project (CMIP6). Geosci. Model Dev. 9, 1937-1958 (2016).

  • 7.

    Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A. & Lenaerts, J. Accelerating the contribution of Greenland and Antarctic Ice Sheets to sea level rise. Geophys. Res. leit. 38, L05503 (2011).

  • 8.

    Stouffer, R.J., Seidov, D. & Haupt, B.J. Climatic response to foreign freshwater sources: the North Atlantic versus the South Ocean. J. Clim. 20, 436-448 (2007).

  • 9.

    Fogwill, C.J., Phipps, S.J., Turney, C.S.M. & Golledge, N.R. The sensitivity of the southern ocean to an increased contribution of the Antarctic region to the melting of the ice layer. Earths Futur. 3, 317-329 (2015).

  • 10.

    Park, W. & Latif, M. Ensemble global warming simulations with melted water Idealized Antarctica. Clim. dyn. https://doi.org/10.1007/s00382-018-4319-8 (2018).

  • 11.

    Bintanja, R., van Oldenborgh, G.J., Drijfhout, S.S., Wouters, B. & Katsman, C.A. The important role for ocean heating and the rise in ice temperature in the expansion of Antarctic ice. Nat. Geosci. 6, 376-379 (2013).

  • 12.

    Paul G., Smith, I.J., Langhorne, P.J. & Bitz, C.M. Time-dependent fresh water inflows from ice shelves: the impact on ice from the Antarctic Sea and the South Ocean in an Earth system model. Geophys. Res. leit. 44, 10454-10461 (2017).

  • 13.

    Rhodes, C. J. Conference on Climate Change in Paris in 2015: COP21. Sci. Prog. 99, 97-104 (2016).

  • 14.

    Oppenheimer, M. Global warming and stability Ice Antarctic Ice Sheet. The nature 393, 325-332 (1998).

  • 15.

    Rignot, E. & Jacobs, S. Rapid thawing of the widespread bottom near Antarctic ice sheet grounding lines. Science 296, 2020-2023 (2002).

  • 16.

    Shepherd, A., Wingham, D. & Rignot, E. The warm ocean erodes the Western Antarctic ice sheet. Geophys. Res. leit. 31, L23402 (2004).

  • 17.

    Obes, T., Abe-Ouchi, A., Kusahara, K., Hasumi, H. & Ohgaito, R. The Basal Melting of Antarctic Ice Sheets at Climatic Fortification of Last Glacial Maximum and CO2 doubling. J. Clim. 30, 3473-3497 (2017).

  • 18.

    Aiken, C. M. & England, M. H. The sensitivity of the current climate to the freshwater force associated with ice loss in Antarctica. J. Clim. 21, 3936-3946 (2008).

  • 19.

    Bakker, P., Clark, P.U., Golledge, N.R., Schmittner, A. & Weber, M.E. Holocene climate changes centennial scale, amplified by the ice discharge of Antarctic Ice Sheet. The nature 541, 72-76 (2017).

  • 20.

    Swart, N.C. & Fyfe, J.C. The influence of the recent withdrawal of the Antarctic ice sheet on the simulated ice zone trends. Geophys. Res. leit. 40, 4328-4332 (2013).

  • 21.

    Zhang, R. & Delworth, T. The tropical reaction simulated at a substantial weakening of Atlantic thermohaline circulation. J. Clim. 18, 1853-1860 (2005).

  • 22.

    Cabré, A., Marinov, I. & Gnanadesikan, A. Global atmospheric teleconferencing and multidecadial climatic oscillations due to convection of the southern ocean. J. Clim. 30, 8107-8126 (2017).

  • 2. 3.

    Purich, A., Cai, W., England, M. H. & Cowan, T. Proof of the Link between Modeling Trends of Antarctic Ice and Undeveloped Wind Changes. Nat. commun. 7, 10409 (2016).

  • 24.

    Polvani, L.M. & Smith, K.L. Pot explains natural variability observed Antarctic ice trends? New models of evidence from CMIP5. Geophys. Res. leit. 40, 3195-3199 (2013).

  • 25.

    Haumann, F. A., Notz, D. & Schmidt, H. Anthropic Influence on Recent Changes in Antarctic Ice-Based Circulation. Geophys. Res. leit. 41, 8429-8437 (2014).

  • 26.

    Merino, N. et al. Impact of freshwater Antarctic water growth on regional ice cover in the South Ocean. Ocean Model. 121, 76-89 (2018).

  • 27.

    Bintanja, R., Van Oldenborgh, G. J. & Katsman, C. A. Effect of Fresh Water Growth in Antarctic Ice Shelves on Future Ice Antarctic Trends. Ann. Glaciol. 56, 120-126 (2015).

  • 28.

    Shepherd, A. et al. A reconciled estimate of the ice mass balance. Science 338, 1183-1189 (2012).

  • 29.

    Sutterley, T. C. et al. The mass loss of Amundsen's western embarrassment of Antarctica from four independent techniques. Geophys. Res. leit. 41, 8421-8428 (2014).

  • 30.

    Pauling, A.G., Bitz, C.M., Smith, I.J. & Langhorne, P.J. The answer of the southern and antarctic ocean ice to fresh water from ice shelves in an Earth system model. J. Clim. 29, 1655-1672 (2016).

  • 31.

    Goddard, P. B., Dufour, C. O., Yin, J., Griffies, S. M. & Winton, M. CO2– the warming of the ocean induced by the Antarctic continental shelf in a global climate model. J. Geophys. Res. oceans 122, 8079-8101 (2017).

  • 32.

    Stewart, A. L. & Thompson, A. F. Eddy-mediated transport of deep warm circumferential waters over the Antarctic shelf break. Geophys. Res. leit. 42, 432-440 (2015).

  • 33.

    Silvano, A. et al. Refreshing by melting glacial waters improves the melting of ice shelves and reduces the formation of Antarctic's bottom. Sci. adv. 4, eaap9467 (2018).

  • 34.

    Spence, P. et al. Localized Rapid Localized Warming of Antarctic Underwater Waves by Remote Winds. Nat. Clim. Chang. 7, 595-603 (2017).

  • 35.

    Massom, R. A. et al. Antarctic disintegration of ice shelves triggered by sea ice loss and swelling of the ocean. The nature 558, 383-389 (2018).

  • 36.

    Vizcaino, M. et al. Greenland's coupled Ice Sheet simulations and climate change up to 2300 AD. Geophys. Res. leit. 42, 3927-3935 (2015).

  • 37.

    Sangiorgi, F. et al. The warming of the southern ocean and the withdrawal of the Wilkes Land ice sheet during the Miocene. Nat. commun. 9, 317 (2018).

  • 38.

    Fyke, J., Sergeinko, O., Loftverstorm, M., Price, S. & Lenaerts, J. T. M. An Overview of Interactions and Feedback between Ice Sheets and the Earth System. Rev. Geophys. 56, 361-408 (2018).

  • 39.

    Stern, A. A., Adcroft, A. & Sergienko, O. Effects of Antarctic Antarctic Antarctic Antarctic Antarctic Dimension Distribution on a Global Climate Model. J. Geophys. Res. oceans 121, 5773-5788 (2016).

  • 40.

    Rignot, E., Jacobs, S., Mouginot, J. & Scheuchl, B. Ice melting around the Antarctic. Science 341, 266-270 (2013).

  • 41.

    Stammer, D. The global ocean response to the melting of ice in Greenland and Antarctica. J. Geophys. Res. oceans 113, C06022 (2008).

  • 42.

    Haid, V., Iovino, D. & Masina, S. The Impact of Sweet Water Change on Ice in the Antarctic Sea, in an ocean-ice model. cryosphere 11, 1387-1402 (2017).

  • 43.

    El, J., Winton, M., Vecchi, G., Jia, L. & Rugenstein, M. The transient climatic sensitivity depends on the oceanic circulation of the basic climate. J. Clim. 30, 1493-1504 (2017).

  • 44.

    Swingedouw, D., Fichefet, T., Goosse, H. & Loutre, M. F. Impact of freshwater emissions in the South Ocean on AMOC and climate. Clim. dyn. 33, 365-381 (2009).

  • 45.

    Gregory, J.M. et al. The Data Flow Abnormality (FAFMIP) model for interfacing to CMIP6: Investigating climate change at sea and oceans in response to CO2 forcing. Geosci. Model Dev. 9, 3993-4017 (2016).

  • 46.

    Fetterer, F., Knowles, K., Meier, W., Savoie, M. & Windnagel, A.K. Sea Ice Index, version 3: Expansion of sea ice. National Snow and Ice Data Center https://nsidc.org/data/G02135/versions/3 (2017).

  • 73.

    NOAA. Data Announcement 88-MGG-02, Digital Ground Surface Relief https://www.ngdc.noaa.gov/mgg/global/etopo5.html (National Geophysical Data Center, Boulder, 1988).

  • 47.

    Gent, P. R. et al. The model of the Community climate system version 4. J. Clim. 24, 4973-4991 (2011).

  • 48.

    Dunne, J. P. et al. GFDL from ESM2 worldwide coupled climate-carbon models of earth. Part I: physical formulation and basic simulation features. J. Clim. 25, 6646-6665 (2012).

  • 49.

    Dunne, J. P. et al. GFDL from ESM2 worldwide coupled climate-carbon models of earth. Part II: Carbon system formulation and basic simulation features. J. Clim. 26, 2247-2267 (2013).

  • 50.

    Griffies, S. Gent-McWilliams flux flow. J. Phys. Oceanogr. 28, 831-841 (1998).

  • 51.

    Stocker, T. et al. into the Climate Change 2013: The Basics of Physical Science. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) 33-115 (Cambridge University Press, Cambridge, 2013).

  • 52.

    Sallée, J. B. et al. Assessment of water movement in the South Ocean and features in CMIP5 models: historical bias and response. J. Geophys. Res. oceans 118, 1830-1844 (2013).

  • 53.

    Shu, Q., Song, Z. & Qiao, F. Assessment of ice simulations at sea in CMIP5 models. cryosphere 9, 399-409 (2015).

  • 54.

    Reintges, A., Martin, T., Latif, M. & Park, W. Physical control of the variability of the deep convection of the southern ocean in the CMIP5 models and the Kiel climate model. Geophys. Res. leit. 44, 6951-6958 (2017).

  • 55.

    Gordon, A. The deep Antarctic convection to the west of Maud's growth. J. Phys. Oceanogr. 8, 600-612 (1978).

  • 56.

    by Lavergne, C., Palter, J.B., Galbraith, E.D., Bernardello, R. & Marinov, I. The Cessation of Deep Convection in the Atlantic Ocean Open to Anthropic Climate Change. Nat. Clim. Chang. 4, 278-282 (2014).

  • 57.

    Pellichero, V., Sallee, J.-B., Schmidtko, S., Roquet, F. & Charrassin, J.-B. Mixed ocean layer beneath the ocean of the South Ocean: seasonal cycle and forcing. J. Geophys. Res. oceans 122, 1608-1633 (2017).

  • 58.

    Swart, N.C. & Fyfe, J.C. Changes observed and simulated in southern southern southern hemisphere wind. Geophys. Res. leit. 39, L16711 (2012).

  • 59.

    Downes, S. M. & Hogg, A. M. Southern Ocean Circulation and Compensation of Turbulence in CMIP5 Models. J. Clim. 26, 7198-7220 (2013).

  • 60.

    Frölicher, T. L. et al. Dominance of the South Ocean in Anthropic Carbon and Heat Absorption in CMIP5 Models. J. Clim. 28, 862-886 (2015).

  • 61.

    Verdy, A. & Mazloff, M.R. A data assimilation model for Southern Ocean biogeochemistry estimation. J. Geophys. Res. oceans 122, 6968-6988 (2017).

  • 62.

    Rodgers, K. B., Lin, J. & Froelicher, T. L. The appearance of several oceanic ecosystem leaders in a large suite with a model of an earthly system. Biogeosciences 12, 3301-3320 (2015).

  • 63.

    Wang, Z. et al. An atmospheric origin of the multi-decade bipolar railings. Sci. representative. 5, 8909 (2015).

  • 64.

    Meehl, G. A., Arblaster, J.M., Bitz, C.M., Chung, C. T. Y. & Teng, H. The expansion of the Antarctic ice between 2000 and 2014, determined by the tropical variability of the Pacific decadence. Nat. Geosci. 9, 590-595 (2016).

  • 65.

    Depoorter, M. A. et al. Traffic flows and basal melting rate of Antarctic ice shelves. The nature 502, 89-92 (2013).

  • 66.

    Dupont, T. & Alley, R. Assessment of the importance of ice support to ice flow. Geophys. Res. leit. 32, L04503 (2005).

  • 67.

    Lazeroms, W. M. J., Jenkins, A., Gudmundsson, G. H. & van de Wal, R. S. W. Modeling the current basal melting rates for Antarctic ice shelves using a parameterisation of floating plumes of molten water. cryosphere 12, 49-70 (2018).

  • 68.

    MacAyeal, D.R. Oceanography of the Antarctic Continental Shelf (eds., Jacobs, S.) 133-143 (American Geophysical Union, Washington, 1985).

  • 69.

    Netherlands, P.R., Jenkins, A. & Holland, D.M. The answer to melting the ice base at variations in ocean temperature. J. Clim. 21, 2558-2572 (2008).

  • 70.

    Little, C.M., Gnanadesikan, A. & Oppenheimer, M. How the morphology of the ice shelf controls the basal melting. J. Geophys. Res. oceans 114, C12007 (2009).

  • 71.

    Goldberg, D. N. et al. Investigating the interaction of ice and ocean with a fully coupled ice-ocean model: 2. Sensitivity to external forces. J. Geophys. Res. Earth Surf. 117, F02038 (2012).

  • 72.

    Griffies, S.M. Elements of the Ocean Modular Model (MOM). Report no. 7, https://github.com/mom-ocean/mom-ocean.github.io/blob/master/assets/pdfs/MOM5_elements.pdf (NOAA GFDL Ocean Group, 2012).

  • [ad_2]
    Source link